Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.026
Filtrar
1.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35039876

RESUMO

Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. The present study compared two commonly used neurotoxin­induced mouse models of chronic PD to guide model selection, explore the pathogenesis and mechanisms underlying PD and develop effective treatments. The chronic PD mouse models were established via treatment with rotenone or 1­methyl­4­phenyl­1,2,3,6-tetrahydropyridine (MPTP) for 6 weeks. The effects of rotenone and MPTP in the mice were compared by assessing neurobehavior, neuropathology and mitochondrial function through the use of the pole, rotarod and open field tests, immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), ionized calcium­binding adapter molecule 1 (Iba­1), neuronal nuclear antigen (NeuN) and (p)S129 α­synuclein, immunofluorescence for GFAP, Iba­1 and NeuN, western blotting for TH, oxygen consumption, complex I enzyme activity. The locomotor activity, motor coordination and exploratory behavior in both rotenone and MPTP groups were significantly lower compared with the control group. However, behavioral tests were no significant differences between the two groups. In the MPTP group, the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta, the reduction of the tyrosine hydroxylase content in the SN and striatum and the astrocyte proliferation and microglial activation in the SN were more significant compared with the rotenone group. Notably, mitochondrial­dependent oxygen consumption and complex I enzyme activity in the SN were significantly reduced in the rotenone group compared with the MPTP group. In addition, Lewy bodies were present only in SN neurons in the rotenone group. Although no significant differences in neurobehavior were observed between the two mouse models, the MPTP model reproduced the pathological features of PD more precisely in terms of the loss of DA neurons, decreased dopamine levels and neuroinflammation in the SN. On the other hand, the rotenone model was more suitable for studying the role of mitochondrial dysfunction (deficient complex I activity) and Lewy body formation in the SN, which is a characteristic pathological feature of PD. The results indicated that MPTP and rotenone PD models have advantages and disadvantages, therefore one or both should be selected based on the purpose of the study.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Aprendizagem da Esquiva/fisiologia , Western Blotting , Doença Crônica , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/citologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Rotenona , Substância Negra/citologia , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Neurosci Lett ; 771: 136414, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-34954117

RESUMO

Our previous investigation showed Wnt signal pathway was significantly activated during DA neuron differentiation of epiblast-derived stem cells. In this study, we next attempt to examine the therapeutic potential of the purified exosomes derived bone marrow mesenchymal stem cells (BMSCs) by administrating exosomes into the rat striatum of parkinson's disease (PD) animal model. Results revealed that the protein levels of interleukin (IL)-6, IL-1ß, tumor necrosis factor-alpha (TNF-α), and reactive oxygen species (ROS) in the substantia nigra of PD rats were down regulated after injection of BMSC induced-Exosomes into the striatum of PD model compared to BMSC quiescent-Exosomes. In addition, the expression of ionized calcium binding adaptor molecule 1 (Iba1) mRNA was significantly decreased, while the expression of tyrosine hydroxylase (TH) mRNA was increased after injection of BMSC induced-Exosomes. Injection of BMSC induced-Exosomes into the striatum rescued the rotation behavior and climbing speed in the PD rats. More importantly, Wnt5a was found to be enriched in BMSC induced Exosomes, which could be effectively transferred to the substantia nigra of PD rats. In conclusion, these findings demonstrated that exosomes isolated during dopaminergic neuron differentiation could rescue the pathogenic features of Parkinson's disease by reshaping the inflammatory microenvironment in the substantia nigra and repairing the injury to DA nerves.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Exossomos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Neurogênese , Doença de Parkinson/terapia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/citologia , Substância Negra/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Neurotox Res ; 39(6): 1892-1907, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34762290

RESUMO

Parkinson disease (PD) prevalence varies by ethnicity. In an earlier study, we replicated the reduced vulnerability to PD in an admixed population, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6 J, MPTP-resistant CD-1 and their F1 crossbreds. In the present study, we investigated if the differences have a developmental origin. Substantia nigra was evaluated at postnatal days 2 (P2), P6, P10, P14, P18, and P22. C57BL/6 J mice had smaller nigra and fewer dopaminergic neurons than the CD-1 and crossbreds at P2, which persisted through development. A significant increase in numbers and nigral volume was observed across strains until P14. A drastic decline thereafter was specific to C57BL/6 J. CD-1 and crossbreds retained their numbers from P14 to stabilize with supernumerary neurons at adulthood. The neuronal size increased gradually to attain adult morphology at P10 in the resistant strains, vis-à-vis at P22 in C57BL/6 J. Accordingly, in comparison to C57BL/6 J, the nigra of CD-1 and reciprocal crossbreds possessed cytomorphological features of resilience, since birth. The considerably lesser dopaminergic neuronal loss in the CD-1 and crossbreds was seen at P2 and P14 and thereafter was complemented by attenuated developmental cell death. The differences in programmed cell death were confirmed by reduced TUNEL labelling, AIF, and caspase-3 expression. GDNF expression aligned with the cell death pattern at P2 and P14 in both nigra and striatum. Earlier maturity of nigra and its neurons appears to be better features that reflect as MPTP resistance at adulthood. Thus, variable MPTP vulnerability in mice and also differential susceptibility to PD in humans may arise early during nigral development.


Assuntos
Apoptose , Neurônios/patologia , Doença de Parkinson/etiologia , Substância Negra/patologia , Animais , Animais Recém-Nascidos/anatomia & histologia , Contagem de Células , Suscetibilidade a Doenças/patologia , Feminino , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Substância Negra/citologia
4.
Nature ; 599(7886): 650-656, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732887

RESUMO

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Morte Celular , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Progressão da Doença , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
5.
Neuropharmacology ; 201: 108831, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655599

RESUMO

Parkinson's disease (PD), a common neurodegenerative disease is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The cause of dopaminergic loss in PD remains unknown for a long time, however, recent reports suggest oxidative stress plays a key role in the pathogenesis of PD. Paraquat (PQ), a widely used herbicide is an oxidative stress inducer that has been implicated as a potential risk factor for the development of PD. Flavonoids are naturally occurring polyphenolic compounds that display a variety of therapeutic properties against oxidative stress. Naringenin (NAR), a natural flavonoid, exhibits neuroprotection against PD-related pathology. However, studies on its neuroprotective role and the underlying mechanisms are scarce, therefore the present study explored the potential neuroprotective role of NAR in PQ-induced parkinsonism in SH-SY5Y cells and rat model. The effect of NAR on PQ-induced cellular toxicity was determined by measuring cell viability, oxidative stress, ATP levels and the same effect was determined by assessing behavioral, biochemical, immunohistochemical, qRT-PCR and Western blot in rat model. NAR treatment in SH-SY5Y cells resulted in increased cell viability, reduced oxidative stress, elevated mitochondrial membrane potential, and higher cellular ATP levels. In rats, NAR treatment resulted in significant neuroprotection against PQ-induced behavioral deficits, oxidative stress, mitochondrial dysfunction, and astrocytosis. NAR treatment significantly modulated PQ-induced mRNA expressions of DRD2, DAT, LRRK2, SNCA, ß-catenin, caspase-3, BDNF genes. NAR treatment increased TH protein expression and modulated its immunoreactivity in rat striatum. Also, GFAP decreased in response to NAR treatment. So, in the present study, NAR exhibits neuroprotection against PQ-induced neurotoxicity and neurodegeneration indicating its novel therapeutic potential against PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Flavanonas/farmacologia , Herbicidas/efeitos adversos , Fármacos Neuroprotetores , Paraquat/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Substância Negra/citologia , Substância Negra/patologia
6.
Stem Cell Reports ; 16(11): 2718-2735, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678205

RESUMO

In Parkinson's disease (PD), substantia nigra (SN) dopaminergic (DA) neurons degenerate, while related ventral tegmental area (VTA) DA neurons remain relatively unaffected. Here, we present a methodology that directs the differentiation of mouse and human pluripotent stem cells toward either SN- or VTA-like DA lineage and models their distinct vulnerabilities. We show that the level of WNT activity is critical for the induction of the SN- and VTA-lineage transcription factors Sox6 and Otx2, respectively. Both WNT signaling modulation and forced expression of these transcription factors can drive DA neurons toward the SN- or VTA-like fate. Importantly, the SN-like lineage enriched DA cultures recapitulate the selective sensitivity to mitochondrial toxins as observed in PD, while VTA-like neuron-enriched cultures are more resistant. Furthermore, a proteomics approach led to the identification of compounds that alter SN neuronal survival, demonstrating the utility of our strategy for disease modeling and drug discovery.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/genética , Doença de Parkinson/genética , Células-Tronco Pluripotentes/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Neurológicos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Substância Negra/citologia , Área Tegmentar Ventral/citologia
7.
Neurosci Lett ; 764: 136222, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500002

RESUMO

A growing body of evidence indicates an association between flavin-containing monooxygenase (FMO) and neurodegeneration, including Parkinson's disease (PD); however, the details of this association are unclear. We previously showed that the level of Fmo1 mRNA is decreased in an in vitro rotenone model of parkinsonism. To further explore the potential involvement of FMO1 deficiency in parkinsonism, we generated Fmo1 knockout (KO) mice and examined the survival of dopaminergic neurons and relative changes. Fmo1 KO mice exhibited loss of tyrosine hydroxylase-positive neurons, decreased levels of tyrosine hydroxylase and Parkin proteins, and increased levels of pro-inflammatory cytokines (IL1ß and IL6) in the nigrostriatal region. Moreover, the protein levels of PTEN induced kinase 1 (PINK1) and p62, and the Microtubule associated protein 1 light chain 3 (LC3)-II/I ratio were not significantly altered in Fmo1 KO mice (P > 0.05). FMO1 deficiency promotes neuroinflammation in dopaminergic neurons in mice, thus may plays a potential pathological role in dopaminergic neuronal loss. These findings may provide new insight into the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Doenças Neuroinflamatórias/imunologia , Oxigenases/deficiência , Doença de Parkinson/imunologia , Substância Negra/patologia , Animais , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Doenças Neuroinflamatórias/patologia , Oxigenases/genética , Doença de Parkinson/patologia , Proteínas Quinases/análise , Proteínas Quinases/metabolismo , Proteína Sequestossoma-1/análise , Proteína Sequestossoma-1/metabolismo , Substância Negra/citologia , Substância Negra/imunologia , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/análise , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/metabolismo
8.
Neurosci Lett ; 763: 136177, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400288

RESUMO

p62/SQSTM1 is a multifunctional, cytoplasmic protein with fundamental roles in autophagy and antioxidant responses. Here we showed that p62 translocated from the cytoplasm to the nucleus in nigral dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid (MPTP)-induced mouse model of Parkinson's disease (PD). We found that p62 was physically associated with glycogen synthase kinase (GSK)-3ß, a serine/threonine protein kinase implicated in dopaminergic neurodegeneration in PD, and that MPTP treatment promoted dissociation of the complex in mice. Conditional knockout of GSK-3 prevented nuclear translocation of p62, suggesting that this translocation was detrimental to dopaminergic neurons. p62 knockout mice were used to investigate the role of p62 in MPTP-induced neuronal death. Knockout of p62 aggravated neuronal injury induced by MPTP intoxication, suggesting that p62 plays an important role in dopaminergic cell survival in stress conditions. Together, our data demonstrate that GSK-3 mediates nuclear translocation of p62 during MPTP-induced parkinsonian neurodegeneration. These findings shed new light on the role of the cytoplasmic-nuclear shuttling of p62 and the mechanism underlying GSK-3-depedent neuronal death in PD pathogenesis.


Assuntos
Neurônios Dopaminérgicos/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Transtornos Parkinsonianos/patologia , Proteína Sequestossoma-1/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Substância Negra/citologia , Substância Negra/patologia
9.
Elife ; 102021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34409942

RESUMO

Midbrain dopamine (DA) neurons are slow pacemakers that maintain extracellular DA levels. During the interspike intervals, subthreshold slow depolarization underlies autonomous pacemaking and determines its rate. However, the ion channels that determine slow depolarization are unknown. Here we show that TRPC3 and NALCN channels together form sustained inward currents responsible for the slow depolarization of nigral DA neurons. Specific TRPC3 channel blockade completely blocked DA neuron pacemaking, but the pacemaking activity in TRPC3 knock-out (KO) mice was perfectly normal, suggesting the presence of compensating ion channels. Blocking NALCN channels abolished pacemaking in both TRPC3 KO and wild-type mice. The NALCN current and mRNA and protein expression are increased in TRPC3 KO mice, indicating that NALCN compensates for TRPC3 currents. In normal conditions, TRPC3 and NALCN contribute equally to slow depolarization. Therefore, we conclude that TRPC3 and NALCN are two major leak channels that drive robust pacemaking in nigral DA neurons.


Assuntos
Relógios Biológicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Canais Iônicos/genética , Proteínas de Membrana/genética , Neurônios/fisiologia , Substância Negra/fisiologia , Canais de Cátion TRPC/genética , Potenciais de Ação , Animais , Relógios Biológicos/genética , Neurônios Dopaminérgicos/citologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Substância Negra/citologia
10.
J Mol Neurosci ; 71(8): 1515-1524, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34286456

RESUMO

Encompassing live cell imaging and morphometrics at the microscopical level, we showed here, for the first time, protection of neuronal-like cells by the novel drug candidate, SKIP, against the Parkinson's disease-related neurotoxin, rotenone. Mechanistically, rotenone disrupted microtubule dynamics, which SKIP partially repaired through microtubule end-binding proteins, coupled with increasing neurite branch length. Given the previous association of rotenone toxicity with increased dopaminergic cell death hallmarking Parkinson's disease, we chose an established rat model of 6-hydroxydopamine (6-OHDA) toxicity to initially evaluate SKIP in vivo. SKIP pretreatment showed protection against nigral dopaminergic cell degeneration and improved motor behavior in the forelimb asymmetry test. With Parkinson's disease being a major neurodegenerative disorder, afflicting millions of people globally, and with disease modification challenges, SKIP may hold promise for future therapeutic development.


Assuntos
Antiparkinsonianos/farmacologia , Microtúbulos/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Antiparkinsonianos/uso terapêutico , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Microtúbulos/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Ratos , Ratos Sprague-Dawley , Rotenona/toxicidade , Substância Negra/citologia
11.
Neuroimage ; 239: 118255, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119638

RESUMO

In Parkinson's disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron. However, the exact mechanisms of MRI contrast in the substantia nigra are not well understood, hindering the development of powerful biomarkers. In the present report, we illuminate the contrast mechanisms in gradient and spin echo MR images in human nigrosome 1 by combining quantitative 3D iron histology and biophysical modeling with quantitative MRI on post mortem human brain tissue. We show that the dominant contribution to the effective transverse relaxation rate (R2*) in nigrosome 1 originates from iron accumulated in the neuromelanin of dopaminergic neurons. This contribution is appropriately described by a static dephasing approximation of the MRI signal. We demonstrate that the R2* contribution from dopaminergic neurons reflects the product of cell density and cellular iron concentration. These results demonstrate that the in vivo monitoring of neuronal density and iron in nigrosome 1 may be feasible with MRI and provide directions for the development of biomarkers for an early detection of dopaminergic neuron depletion in Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/química , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Substância Negra/citologia , Idoso de 80 Anos ou mais , Biofísica , Ferritinas/análise , Humanos , Masculino , Melaninas/análise , Pessoa de Meia-Idade , Modelos Neurológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Software , Substância Negra/química
12.
Neuron ; 109(10): 1621-1635.e8, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33979634

RESUMO

Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.


Assuntos
Dopamina/metabolismo , Proteínas de Insetos/genética , Optogenética/métodos , Rodopsina/genética , Potenciais Sinápticos , Animais , Células Cultivadas , Culicidae , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Células HEK293 , Humanos , Proteínas de Insetos/metabolismo , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Rodopsina/metabolismo , Substância Negra/citologia , Substância Negra/fisiologia
13.
Neurosci Lett ; 757: 135972, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34033888

RESUMO

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by the accumulation of pathogenic phosphorylated α-synuclein in oligodendrocytes. In brains affected by MSA, severe astrogliosis is also observed, but its precise role in MSA pathogenesis remains largely unknown. Recently, the stimulator of interferon genes (STING) pathway and type I interferons, its downstream molecules, have been reported to be involved in the neurodegenerative process and to be activated in astrocytes. This study aimed to investigate the role of the STING pathway in the pathogenesis of MSA using postmortem brains. Samples used for immunohistochemical analysis included 6 cases of MSA parkinsonism type (MSA-P), 6 cases of MSA cerebellar type (MSA-C), and 7 age-matched controls. In MSA-P cases, astrocytes immunopositive for STING and TANK-binding kinase 1 (TBK1), its downstream molecule, were abundantly observed in the putamen and the substantia nigra. Moreover, these molecules colocalized with glial fibrillary acidic protein (GFAP) in reactive astrocytes, and the density of STING-positive astrocytes correlated with that of GFAP-positive reactive astrocytes in the brains of patients with MSA-P. These results suggest that the upregulated expression of STING pathway-related proteins in astrocytes and the subsequent inflammation may contribute to the pathogenesis in MSA-P and could provide novel therapeutic targets for the treatment of MSA.


Assuntos
Astrócitos/metabolismo , Proteínas de Membrana/metabolismo , Atrofia de Múltiplos Sistemas/imunologia , Putamen/patologia , Substância Negra/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Putamen/citologia , Putamen/imunologia , Transdução de Sinais/imunologia , Substância Negra/citologia , Substância Negra/imunologia , Regulação para Cima/imunologia
14.
PLoS One ; 16(2): e0245663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534843

RESUMO

Parkinson's disease is associated with the loss of dopamine (DA) neurons in ventral mesencephalon. We have previously reported that no single neurotrophic factor we tested protected DA neurons from the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) in dissociated cultures isolated from the P0 rat substantia nigra, but that a combination of five neurotrophic factors was protective. We now report that cerebral DA neurotrophic factor (CDNF) and a variant of neurturin (NRTN), N4, were also not protective when provided alone but were protective when added together. In cultures isolated from the substantia nigra, MPP+ (10 µM) decreased tyrosine hydroxylase-positive cells to 41.7 ± 5.4% of vehicle control. Although treatment of cultures with 100 ng/ml of either CDNF or N4 individually before and after toxin exposure did not significantly increase survival in MPP+-treated cultures, when the two trophic factors were added together at 100 ng/ml each, survival of cells was increased 28.2 ± 6.1% above the effect of MPP+ alone. In cultures isolated from the ventral tegmental area, another DA rich area, a higher dose of MPP+ (1 mM) was required to produce an EC50 in TH-positive cells but, as in the substantia nigra, only the combination of CDNF and N4 (100 ng/ml each) was successful at increasing the survival of these cells compared to MPP+ alone (by 22.5 ± 3.5%). These data support previous findings that CDNF and N4 may be of therapeutic value for treatment of PD, but suggest that they may need to be administered together.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Fatores de Crescimento Neural/farmacologia , Fármacos Neuroprotetores/farmacologia , Neurturina/farmacologia , 1-Metil-4-fenilpiridínio , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Nomifensina/farmacologia , Ratos Sprague-Dawley , Substância Negra/citologia , Trítio/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/citologia
15.
J Vis Exp ; (168)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33616088

RESUMO

Estimation of the number of dopaminergic neurons in the substantia nigra is a key method in pre-clinical Parkinson's disease research. Currently, unbiased stereological counting is the standard for quantification of these cells, but it remains a laborious and time-consuming process, which may not be feasible for all projects. Here, we describe the use of an image analysis platform, which can accurately estimate the quantity of labeled cells in a pre-defined region of interest. We describe a step-by-step protocol for this method of analysis in rat brain and demonstrate it can identify a significant reduction in tyrosine hydroxylase positive neurons due to expression of mutant α-synuclein in the substantia nigra. We validated this methodology by comparing with results obtained by unbiased stereology. Taken together, this method provides a time-efficient and accurate process for detecting changes in dopaminergic neuron number, and thus is suitable for efficient determination of the effect of interventions on cell survival.


Assuntos
Neurônios Dopaminérgicos/citologia , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Substância Negra/citologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo
16.
Mol Cell Neurosci ; 110: 103583, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338634

RESUMO

The quinone derivative of the non-psychotropic cannabinoid cannabigerol (CBG), so-called VCE-003.2, has been recently investigated for its neuroprotective properties in inflammatory models of Parkinson's disease (PD) in mice. Such potential derives from its activity at the peroxisome proliferator-activated receptor-γ (PPAR-γ). In the present study, we investigated the neuroprotective properties of VCE-003.2 against the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA), in comparison with two new CBG-related derivatives, the cannabigerolic acid quinone (CBGA-Q) and its sodium salt CBGA-Q-Salt, which, similarly to VCE-003.2, were found to be active at the PPAR-γ receptor, but not at the cannabinoid CB1 and CB2 receptors. First, we investigated their cytoprotective properties in vitro by analyzing cell survival in cultured SH-SY5Y cells exposed to 6-OHDA. We found an important cytoprotective effect of VCE-003.2 at a concentration of 20 µM, which was not reversed by the blockade of PPAR-γ receptors with GW9662, supporting its activity at an alternative site (non-sensitive to classic antagonists) in this receptor. We also found CBGA-Q and CBGA-Q-Salt being cytoprotective in this cell assay, but their effects were completely eliminated by GW9662, thus indicating that they are active at the canonical site in the PPAR-γ receptor. Then, we moved to in vivo testing using mice unilaterally lesioned with 6-OHDA. Our data confirmed that VCE-003.2 administered orally (20 mg/kg) preserved tyrosine hydroxylase (TH)-positive nigral neurons against 6-OHDA-induced damage, whereas it completely attenuated the astroglial (GFAP) and microglial (CD68) reactivity found in the substantia nigra of lesioned mice. Such neuroprotective effects caused an important recovery in the motor deficiencies displayed by 6-OHDA-lesioned mice in the pole test and the cylinder rearing test. We also investigated CBGA-Q, given orally (20 mg/kg) or intraperitoneally (10 mg/kg, i.p.), having similar benefits compared to VCE-003.2 against the loss of TH-positive nigral neurons, glial reactivity and motor defects caused by 6-OHDA. Lastly, the sodium salt of CBGA-Q, given orally (40 mg/kg) to 6-OHDA-lesioned mice, also showed benefits at behavioral and histopathological levels, but to a lower extent compared to the other two compounds. In contrast, when given i.p., CBGA-Q-Salt (10 mg/kg) was poorly active. We also analyzed the concentrations of dopamine and its metabolite DOPAC in the striatum of 6-OHDA-lesioned mice after the treatment with the different compounds, but recovery in the contents of both dopamine and DOPAC was only found after the treatment with VCE-003.2. In summary, our data confirmed the neuroprotective potential of VCE-003.2 in 6-OHDA-lesioned mice, which adds to its previous activity found in an inflammatory model of PD (LPS-lesioned mice). Additional phytocannabinoid derivatives, CBGA-Q and CBGA-Q-Salt, also afforded neuroprotection in 6-OHDA-lesioned mice, but their effects were lower compared to VCE-003.2, in particular in the case of CBGA-Q-Salt. In vitro studies confirmed the relevance of PPAR-γ receptors for these effects.


Assuntos
Antiparkinsonianos/uso terapêutico , Canabinoides/química , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Quinonas/química , Animais , Antiparkinsonianos/síntese química , Antiparkinsonianos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Doença de Parkinson/etiologia , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
17.
Cell Mol Life Sci ; 78(5): 2081-2094, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33210214

RESUMO

Parkinson's disease (PD) is an incurable age-linked neurodegenerative disease with characteristic movement impairments that are caused by the progressive loss of dopamine-containing neurons (DAn) within the substantia nigra pars compacta. It has been suggested that misfolded protein aggregates together with neuroinflammation and glial reactivity, may impact nerve cell function, leading to neurodegeneration and diseases, such as PD. However, not many studies have been able to examine the role of human glial cells in the pathogenesis of PD. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to reprogram human somatic cells to pluripotency and to generate viable human patient-specific DA neurons and glial cells, providing a tremendous opportunity for dissecting cellular and molecular pathological mechanisms occurring at early stages of PD. This reviews will report on recent work using human iPSC and 3D brain organoid models showing that iPSC technology can be used to recapitulate PD-relevant disease-associated phenotypes, including protein aggregation, cell death or loss of neurite complexity and deficient autophagic vacuoles clearance and focus on the recent co-culture systems that are revealing new insights into the complex interactions that occur between different brain cell types during neurodegeneration. Consequently, such advances are the key to improve our understanding of PD pathology and generate potential targets for new therapies aimed at curing PD patients.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuroglia/metabolismo , Doença de Parkinson/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Cultura de Células/métodos , Neurônios Dopaminérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neuroglia/citologia , Organoides/citologia , Organoides/metabolismo , Doença de Parkinson/patologia , Substância Negra/citologia , Substância Negra/metabolismo
18.
EMBO J ; 40(3): e105537, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33351190

RESUMO

The netrin-1/DCC ligand/receptor pair has key roles in central nervous system (CNS) development, mediating axonal, and neuronal navigation. Although expression of netrin-1 and DCC is maintained in the adult brain, little is known about their role in mature neurons. Notably, netrin-1 is highly expressed in the adult substantia nigra, leading us to investigate a role of the netrin-1/DCC pair in adult nigral neuron fate. Here, we show that silencing netrin-1 in the adult substantia nigra of mice induces DCC cleavage and a significant loss of dopamine neurons, resulting in motor deficits. Because loss of adult dopamine neurons and motor impairments are features of Parkinson's disease (PD), we studied the potential impact of netrin-1 in different animal models of PD. We demonstrate that both overexpression of netrin-1 and brain administration of recombinant netrin-1 are neuroprotective and neurorestorative in mouse and rat models of PD. Of interest, we observed that netrin-1 levels are significantly reduced in PD patient brain samples. These results highlight the key role of netrin-1 in adult dopamine neuron fate, and the therapeutic potential of targeting netrin-1 signaling in PD.


Assuntos
Receptor DCC/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Doença de Parkinson/genética , Substância Negra/citologia , Animais , Morte Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Feminino , Inativação Gênica , Humanos , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Transdução de Sinais , Substância Negra/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(51): 32701-32710, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33273122

RESUMO

α-Synuclein is expressed at high levels at presynaptic terminals, but defining its role in the regulation of neurotransmission under physiologically relevant conditions has proven elusive. We report that, in vivo, α-synuclein is responsible for the facilitation of dopamine release triggered by action potential bursts separated by short intervals (seconds) and a depression of release with longer intervals between bursts (minutes). These forms of presynaptic plasticity appear to be independent of the presence of ß- and γ-synucleins or effects on presynaptic calcium and are consistent with a role for synucleins in the enhancement of synaptic vesicle fusion and turnover. These results indicate that the presynaptic effects of α-synuclein depend on specific patterns of neuronal activity.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Anestésicos Inalatórios/farmacologia , Animais , Sinalização do Cálcio , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Isoflurano/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotransmissores/metabolismo , Substância Negra/citologia , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/genética , gama-Sinucleína/metabolismo
20.
Biochem Biophys Res Commun ; 533(4): 1148-1154, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33046245

RESUMO

BACKGROUND: The underlying mechanism of viral infection as a risk factor for Parkinson's disease (PD), the second most common neurodegenerative disease, remains unclear. OBJECTIVE: We used Mac-1-/- and gp91phox-/- transgene animal models to investigate the mechanisms by which poly I:C, a mimic of virus double-stranded RNA, induces PD neurodegeneration. METHOD: Poly I:C was stereotaxically injected into the substantia nigra (SN) of wild-type (WT), Mac-1-knockout (Mac-1-/-) and gp91 phox-knockout (gp91 phox-/-) mice (10 µg/µl), and nigral dopaminergic neurodegeneration, α-synuclein accumulation and neuroinflammation were evaluated. RESULT: Dopaminergic neurons in the nigra and striatum were markedly reduced in WT mice after administration of poly I:C together with abundant microglial activation in the SN, and the expression of α-synuclein was also elevated. However, these pathological changes were greatly dampened in Mac-1-/- and gp91 phox-/- mice. CONCLUSIONS: Our findings demonstrated that viral infection could result in the activation of microglia as well as NADPH oxidase, which may lead to neuron loss and the development of Parkinson's-like symptoms. Mac-1 is a key receptor during this process.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Antígeno de Macrófago 1/metabolismo , NADPH Oxidase 2/metabolismo , Doenças Neurodegenerativas/metabolismo , RNA de Cadeia Dupla/toxicidade , Substância Negra/metabolismo , Animais , Morte Celular/genética , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/citologia , Inflamação/metabolismo , Antígeno de Macrófago 1/genética , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , RNA de Cadeia Dupla/metabolismo , Substância Negra/citologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA